Lunch With

Friends

Amanda Zhang, Amir Hegazy, Brenna Chen,
Jaemyung Choi, Soumika Guduru

What is Lunch
With Friends?

It's a web application

designed to help you
meet people who are
interested in going to the
same restaurants.

of Our App

Log in with Google

Search for a restaurant

Click the restaurant you'd like to visit
Select a group or single option

Get matched to another user

Enter a chat room with them!

tinuing Professional
elopment

= Server endpoints

= Path parameters

= JSON Object

= Object serialization into a database
= Session variables

= Google Maps AP|

= Google Sign-in/OAuth 2.0 API

= Google Cloud Platform

ver Endpoints + Path
meters

1 package CSCI2@1_LunchwithFriends;
2

3@ import java.io.IOException;[]

24
2% @servertndpoint(value = "/chatroomServer/{userID}/{room
2&_ public class ChatRoomServer

278 £
28 * Map of key: room number value: set of sessions (jigw set of users in a chat)
29 * in easier terms- the key is the chatName/roomName, and the value is the set of users in that chat

3e *7 e —— j
31 private static Map<String, Set<Session>> chatRoomMap = (Map<String, Set<Session>>){Collections.synchronizedtap(new HashMap<String, Set<Session>>());

33@ @n0pen

34 pm‘Tmid open(Session session, @PathParam("userID") String userID, @PathParam("room") String room) throws IOException {l
35 session.getUserProperties().put(userID", useriD);

36 session.getUserProperties().put("room”, room);

37 { i

38 * getChat --> Either finds the room this user will chat inside

39 * if no such room exists --> Creates chatroom + stores it inside chatRoomMap as <room, this users session>
40 * chatroom will be a set of user sessions who can message each other

41 % -->in this case, the set of other users this user session with chat with
42 *

43 Set<Session> chatroom = getChat(room);

44 r*

45 * Adding current user's session into created chatroom

46 ™

47 chatroom.add(session);

43 session.getBasicRemote().sendText(makeText("Chat System", "you are now connected as "+userID+" in ChatRoom: "+room+"!"));
49 i

58

51© @nMessage

52 puElic void recievedMessage(String message, Session session) throws IOException

53 {

54 String userID = (String) session.getUserProperties().get("userID");

55 String room = (String) session.getUserProperties().get("room");

56 VL

57 * find the chatroom the user is in */

58 Set<Session> chatroom = getChat(room);

59 /™

60 * Sends message to all chat users in the same chatroom */

61 for(Session rs : chatroom) {

62 if(rs.isopen()) {

63 rs.getBasicRemote().sendText(makeText(userID, message));

64 }

tinuing Professional
elopment

= Server endpoints

= Path parameters

= JSON Object

= Object serialization into a database
= Session variables

= Google Maps AP|

= Google Sign-in/OAuth 2.0 API

= Google Cloud Platform

NObject

Server Endpoint

private String makeText(String userID, String msg) {

JsonObject jObj = Json.createObjectBuilder().add("msg"”, userID+": "+msg).build();
StringWriter sWriter = new StringWriter();

try(JsonWriter jWriter = Json.createlWriter(skWriter)){
jWriter.write(jObj);
}

return sWriter.toString();

Chat Client (chatBasic.jsp)

var getpl = "${liserID}";
var pl = String(getpl);
var getp2 = "${room}";
var p2 = String(getp2);

var socket = new WebSocket(

"ws://localhost:8088@/LunchWithFriends/chatroomServer” + "/" + pl
+ /" + p2);

socket.onmessage = function processMessage(recievedMessage) {
var mdata = JSON.parse(recievedMessage.data);
if (mdata.msg != null)
msgTextArea.value += mdata.msg + "\n";

tinuing Professional
elopment

= Server endpoints

= Path parameters

= JSON Object

= QObject serialization into a database
= Session variables

= Google Maps AP|

= Google Sign-in/OAuth 2.0 API

= Google Cloud Platform

tinuing Professional
elopment

= Server endpoints

= Path parameters

= JSON Object

= Object serialization into a database
= Session variables

= Google Maps AP|

= Google Sign-in/OAuth 2.0 API

= Google Cloud Platform

tinuing Professional
elopment

= Server endpoints

= Path parameters

= JSON Object

= Object serialization into a database
= Session variables

= Google Maps API

= Google Sign-in/OAuth 2.0 API

= Google Cloud Platform

tinuing Professional
elopment

= Server endpoints

= Path parameters

= JSON Object

= Object serialization into a database
= Session variables

= Google Maps AP|

= Google Sign-in/OAuth 2.0 API

= Google Cloud Platform

tinuing Professional
elopment

= Server endpoints

= Path parameters

= JSON Object

= Object serialization into a database
= Session variables

= Google Maps AP|

= (Google Sign-in/OAuth 2.0 API

= Google Cloud Platform

gle Cloud Platform

Google Cloud Platform CI201-LunchWithFriends v Q Search products and resources
DASHBOARD ACTIVITY RECOMMENDATIONS /' CUSTOMIZE
@ How Google Cloud is helping during COVID-19. Learn more DISMISS

Project info H € saL H & Google Cloud Platform status H
Project name Storage used (bytes) All services normal
CSCI201-LunchWithFriends
1215MiB
Project ID
csci20T-lunchwithfriends > Goto Cloud status dashboard
Project number
1086689429442
& Billing H
AADD PEOPLE TO THIS PROJECT Estimated charges USD $0.00
For the billing period Nov 1 - 22, 2020
—> Go to project settings 1214MiB B Take a tour of billing
1030 1045 1PM 11:15
@ database/disk/bytes_used: 1.186GiB
> View detailed charges
& Resources H
e s — Goto the SQL dashboard
¥
1 inst - .
instance Z& Monitoring H
API APls H Set up alerting policies
= Trace H
= Requests (requests/sec) Create uptime checks

No trace data from the past 7 days ‘

0.019/s
’ ‘ ‘ ‘ oian View all dashboards

Is and Tools

= Eclipse

= Apache Tomcat
GSON
Javax
Google Cloud Platform
MySQL
Yelp API

= Google Maps API

= OkHttpClient

ign and Development Decisions

What worked What didn’t work

- Strong communication + helping each other - Difficulty connecting parts together,
on tasks not enough familiarity with team
- Clear GUI mockup & database schema to members’ code
base front & back-end - Testing was difficult b/c many parts
- Clear step-by-step process for user to were interdependent
follow in detailed design document - Not setting hard deadlines for coding
- Flexible project design to tailor to portions -> lots of delay due to
issues/time constraints interdependent parts
[coop
JOB!
=K

side Courses

= (CS5103: Introduction to Programming ‘

= (CS104: Data Structures and OOP

= (CS270: Introduction to Algorithms

= |[TP104: Web Publishing

= EE109: Introduction to Embedded
Systems

a Structures

= HashMap

= ArraylList

= Synchronized Map
= Synchronized Set
= Map

= Set

Why did we choose these data structures?

tithreading +
orking

= Chat Server Endpoint
= Synchronized Java Collections
= Apache Tomcat + Servlets
= Servlet containers use threading to
serve the same servlet to different
requests

r Login Functionality

Guest User
= (Can search & view restaurants
Authenticated User (Log-in through Google)

= Can search & view restaurants
= (Can see other people interested in the
same restaurant
= Can be matched to other users
= A chatroom will be created between
the users

Thanks for watching!

If you have any questions,
feel free to email us:

Brenna Chen <brennajc@usc.edu>
Jae Choi <jaemyung@usc.edu>
Mika Guduru <sguduru@usc.edu>
Amir Hegazy <amirhega@usc.edu>

Amanda Zhang <amzhang@usc.edu>

20

